Skin Care news and information found at www.SpaTreatmentTraining.com brought to you by National Laser Institute. Are you interested in a career that can train you to be a Med Spa technician? Want to become a certified Laser Hair Removal Specialist, Laser Tattoo Removal Specialist, Botox Injections or many more exciting Medical Spa courses? Enroll in the National Laser Institute and find yourself on the fast track to success.

imagePurpose
Postmastectomy radiation therapy is an important component of the multimodality approach to later-stage breast cancers. Unfortunately, despite its proven survival benefits, postmastectomy radiation therapy is deleterious to the skin and soft tissue, causing increased complications and worse aesthetic outcomes after breast reconstruction.
There is currently no effective pharmaceutical agent to mitigate the soft tissue fibrosis and hypovascularity associated with soft tissue radiation. We hypothesized that a novel topical formulation of deferoxamine (DFX) will result in improved cutaneous vascularity and soft tissue pliability in an animal model of irradiated tissue expander–based breast reconstruction.
Methods
This study consisted of 16 hairless rats divided into 4 equal groups: a control group (expander only), a tissue expanded and irradiated group, a tissue expanded + DFX group, and a tissue expanded/irradiated/DFX group. A novel topical formulation of DFX consisted of reconstituted drug dissolved in agents designed to enhance dermal penetrance. Vessels per high-power field (vHPF) were quantified histologically; micro–computed tomography angiography was used to assess vessel volume fraction (VVF) and vessel length density.
Results
Irradiated skin had less vascularity compared with control (3.81 vHPF vs 8.25 vHPF, P = 0.03; 0.79% VVF vs 1.53% VVF, P = 0.06). Treatment of irradiated skin with topical DFX reversed these effects, resulting in vascular findings similar to the control group histologically (7.94 vHPF vs 8.25 HPF, P = 0.985) and via micro–computed tomography angiography (1.05% VVF vs 1.53% VVF, P = 0.272). Similarly, radiation resulted in less volume expansion compared with controls (0.72 vs 0.8 mL, P = 0.04), whereas treatment with topical DFX reversed this effect, allowing for an expansion volume similar to the control group (0.81 vs 0.80 mL, P = 0.999).
Conclusions
In an animal model of irradiated tissue expander–based breast reconstruction, treatment with topical DFX improved the cutaneous vascularity and tissue pliability, resulting in vascular density and final tissue expansion volumes similar to those found in the nonirradiated control group. Topical DFX may be an effective agent for the treatment of soft tissue radiation injury; future studies are indicated to further characterize this novel drug formulation.

Reviews of National Laser Institute